Identification of Coxiella Burnetti and Mycobacterium SPP through Touch-down PCR Examination in Unpasteurized Camel Milk in North-East of Iran

Document Type : Research Paper


1 Department of Food Hygiene and Food Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.

2 Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.

3 Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.

4 Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.


Introduction: Food-borne illness cause major international health problems and reduce economic growth. A highly prevalent zoonotic disease is Q fever, found in many areas like New Zealand, Saudi Arabia, and Egypt. Coxiella burnetii is caused by an obligate intracellular bacterium that is considered in ruminants and ubiquitous and can survive in the environment for a long time. Early and reliable diagnosis of food borne pathogens through molecular methods like polymerase chain reaction is critical to find positive outcomes in eradication programs. Method: In this study 100 milk samples obtained from 100 camels were examined in terms of C. burnetii and Mycobacterium presence through a Touch-down PCR assay. Results: In total, there were six positive specimens of Coxiella burnetii in camel milk samples. No Mycobacterium was found in the samples. Conclusions: The findings indicated that healthy camels were major sources of C. burnetii in North-East of Iran. There is a need for studies on risk of Coxiella infection in farmers, veterinarians, milk‐processing and slaughterhouse workers.


  1. Mares-Guia MA, Guterres A, Rozental T, Ferreira MD, Lemos ER. Clinical and epidemiological use of nested PCR targeting the repetitive element IS1111 associated with the transposase gene from Coxiella burnetii. Braz J Microbiol. 2018; 49:138-43.
  2. Arricau-Bouvery N, Souriau A, Bodier C, Dufour P, Rousset E, Rodolakis A. Effect of vaccination with phase I and phase II Coxiella burnetii vaccines in pregnant goats. Vaccine. 2005;23(35):4392-402.
  3. Angelakis E, Raoult D. Q fever. Vet Microbiol. 2010;140(3-4):297-309.
  4. Rahimi E, Doosti A, Ameri M, Kabiri E, Sharifian B. Detection of Coxiella burnetii by nested PCR in bulk milk samples from dairy bovine, ovine, and caprine herds in Iran. Zoonoses Public Health. 2010 Dec;57(7‐8): e38-41.
  5. Doosti A, Arshi A, Sadeghi M. Investigation of Coxiella burnetii in Iranian camels. J Comp Pathol. 2014;23(1):43-6.
  6. Marrie TJ, Minnick MF, Textoris J, Capo C, Mege JL. Coxiella. In Molecular Medical Microbiology (Second Edition). 2015; 1941-72.
  7. Lang GH. Coxiellosis (Q fever) in animals. Q fever. 1990; 1:23-48.
  8. Messelhäusser U, Kämpf P, Hörmansdorfer S, Wagner B, Schalch B, Busch U, Höller C, Wallner P, Barth G, Rampp A. Culture and molecular method for detection of Mycobacterium tuberculosis complex and Mycobacterium avium subsp. paratuberculosis in milk and dairy products. Appl Environ Microbiol. 2012; 78(1):295-7.
  9. Kinne J, Johnson B, Jahans KL, Smith NH, Ul-Haq A, Wernery U. Camel tuberculosis–a case report. Trop Anim Health Prod. 2006;38(3):207-13.
  10. El‐Sayed A, El‐Shannat S, Kamel M, Castañeda‐Vazquez MA, Castañeda‐Vazquez H. Molecular epidemiology of Mycobacterium Bovis in humans and cattle. Zoonoses Public Health. 2016 Jun;63(4):251-64.
  11. Kappeler S. Compositional and structural analysis of camel milk proteins with emphasis on protective proteins (Doctoral dissertation, ETH Zurich).
  12. Berri M, Laroucau K, Rodolakis A. The detection of Coxiella burnetii from ovine genital swabs, milk and fecal samples by the use of a single touchdown polymerase chain reaction. Vet Microbiol. 2000;72(3-4):285-93.
  13. Sambrook J, Russell DW. SDS-polyacrylamide gel electrophoresis of proteins. CSH Protoc. 2006;2006(4):pdb-rot4540.
  14. Hoover TA, Vodkin MH, Williams JC. A Coxiella burnetti repeated DNA element resembling a bacterial insertion sequence. J Bacteriol Res. 1992;174(17):5540-8.
  15. Vaidya VM, Malik SV, Kaur S, Kumar S, Barbuddhe SB. Comparison of PCR, immunofluorescence assay, and pathogen isolation for diagnosis of Q fever in humans with spontaneous abortions. J Clin Microbiol. 2008;46(6):2038-44.
  16. Bolaños CA, Franco MM, Souza Filho AF, Ikuta CY, Burbano-Rosero EM, Ferreira Neto JS, Heinemann MB, Motta RG, Paula CL, Morais AB, Guerra ST. Nontuberculous mycobacteria in milk from positive cows in the intradermal comparative cervical tuberculin test: implications for human tuberculosis infections. Rev Inst Med Trop Sao Paulo. 2018;60.
  17. Gill AK, Filia G, Leishangthem GD, Narang D, Singh ST, Singh CK. Detection and Identification of Mycobacterium tuberculosis and Mycobacterium bovis from Blood and Milk of Bovines. J Anim Res. 2020;10(1):59-65.
  18. Ioannou I, Chochlakis D, Kasinis N, Anayiotos P, Lyssandrou A, Papadopoulos B, Tselentis Y, Psaroulaki A. Carriage of Rickettsia spp., Coxiella burnetii and Anaplasma spp. by endemic and migratory wild birds and their ectoparasites in Cyprus. Clin Microbiol Infect. 2009; 15:158-60.
  19. Raoult D, Marrie TJ, Mege JL. Natural history and pathophysiology of Q fever. Lancet Infect Dis. 2005;5(4):219-26.
  20. Mohammed OB, Jarelnabi AA, Aljumaah RS, Alshaikh MA, Bakhiet AO, Omer SA, Alagaili AN, Hussein MF. Coxiella burnetii, the causative agent of Q fever in Saudi Arabia: molecular detection from camel and other domestic livestock. Asian Pac J Trop Dis. 2014;7(9):715-9.
  21. Qiu Y, Nakao R, Namangala B, Sugimoto C. First genetic detection of Coxiella burnetii in Zambian livestock. Am J Trop Med Hyg. 2013;89(3):518.
  22. El-Mahallawy HS, Kelly P, Zhang J, Yang Y, Wei L, Tian L, Fan W, Zhang Z, Wang C. Serological and molecular evidence of Coxiella burnetii in samples from humans and animals in China. Ann Agric Environ Med. 2016;23(1).
  23. Jung BY, Seo MG, Lee SH, Byun JW, Oem JK, Kwak D. Molecular and serologic detection of Coxiella burnetii in native Korean goats (Capra hircus coreanae). Vet Microbiol. 2014;173(1-2):152-5.
  24. Norouzian H, Diali HG, Azadpour M, Afrough P, Shakib P, Mosavi SM, Karami A, Goudarzi G. PCR detection of Coxiella burnetii in milk samples of ruminants, Iran. Journal of Medical Bacteriology. 2018;7(1-2):31-5.
  25. Berri M, Rekiki A, Boumediene KS, Rodolakis A. Simultaneous differential detection of Chlamydophila aborts, Chlamydophila pecorum and Coxiella burnetii from aborted ruminant's clinical samples using multiplex PCR. BMC Microbiol. 2009;9(1):1-8.
  26. Barlow J, Rauch B, Welcome F, Kim SG, Dubovi E, Schukken Y. Association between Coxiella burnetii shedding in milk and subclinical mastitis in dairy cattle. Vet Res. 2008;39(3): 1.
  27. Kim SG, Kim EH, Lafferty CJ, Dubovi E. Coxiella burnetii in bulk tank milk samples, United States. Emerg Infect Dis. 2005;11(4):619.
  28. Kirkan Ş, Kaya O, Tekbiyik S, Parin U. Detection of Coxiella burnetii in cattle by PCR. Turk J Vet Anim Sci. 2008;32(3):215-20.
Volume 10, Issue 4
October 2022
Pages 300-304
  • Receive Date: 03 March 2022
  • Revise Date: 17 June 2022
  • Accept Date: 12 November 2022
  • First Publish Date: 12 November 2022